Back to Search Start Over

A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture

Authors :
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC-254: Data Science and Big Data Lab
Universidad de Sevilla. TIC-134: Sistemas Informáticos
Ministerio de Ciencia e Innovación (MICIN). España
Junta de Andalucía
Fundação para a Ciência e a Tecnologia (FCT)
Melgar García, Laura
Gutiérrez Avilés, David
Godinho, María Teresa
Espada, Rita
Brito, Isabel Sofía
Martínez Álvarez, Francisco
Troncoso Lora, Alicia
Rubio Escudero, Cristina
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC-254: Data Science and Big Data Lab
Universidad de Sevilla. TIC-134: Sistemas Informáticos
Ministerio de Ciencia e Innovación (MICIN). España
Junta de Andalucía
Fundação para a Ciência e a Tecnologia (FCT)
Melgar García, Laura
Gutiérrez Avilés, David
Godinho, María Teresa
Espada, Rita
Brito, Isabel Sofía
Martínez Álvarez, Francisco
Troncoso Lora, Alicia
Rubio Escudero, Cristina
Publication Year :
2022

Abstract

Precision agriculture focuses on the development of site-specific harvest considering the variability of each crop area. Vegetation indices allow the study and delineation of different characteristics of each field zone, generally invisible to the naked-eye. This paper introduces a new big data triclustering approach based on evolutionary algorithms. The algorithm shows its capability to discover three-dimensional pat-terns on the basis of vegetation indices from vine crops. Different vegetation indices have been tested to find different patterns in the crops. The results reported using a vineyard crop located in Portugal depicts four areas with different moisture stress particularities that can lead to changes in the management of the vineyard. Furthermore, scalability studies have been performed, showing that the proposed algorithm is suitable for dealing with big datasets.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367106623
Document Type :
Electronic Resource