Back to Search Start Over

Hybrid model using logit and nonparametric methods for predicting micro-entity failure

Authors :
Universidad de Sevilla. Departamento de Economía Financiera y Dirección de Operaciones
Universidad de Sevilla. Departamento de Economía Aplicada III
Blanco Oliver, Antonio Jesús
Irimia Diéguez, Ana Isabel
Oliver Alfonso, María Dolores
Vázquez Cueto, María José
Universidad de Sevilla. Departamento de Economía Financiera y Dirección de Operaciones
Universidad de Sevilla. Departamento de Economía Aplicada III
Blanco Oliver, Antonio Jesús
Irimia Diéguez, Ana Isabel
Oliver Alfonso, María Dolores
Vázquez Cueto, María José
Publication Year :
2016

Abstract

Following the calls from literature on bankruptcy, a parsimonious hybrid bankruptcy model is developed in this paper by combining parametric and non-parametric approaches.To this end, the variables with the highest predictive power to detect bankruptcy are selected using logistic regression (LR). Subsequently, alternative non-parametric methods (Multilayer Perceptron, Rough Set, and Classification-Regression Trees) are applied, in turn, to firms classified as either “bankrupt” or “not bankrupt”. Our findings show that hybrid models, particularly those combining LR and Multilayer Perceptron, offer better accuracy performance and interpretability and converge faster than each method implemented in isolation. Moreover, the authors demonstrate that the introduction of non-financial and macroeconomic variables complement financial ratios for bankruptcy prediction.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367073113
Document Type :
Electronic Resource