Back to Search Start Over

Oscillatory Neural Networks Using VO2 Based Phase Encoded Logic

Authors :
Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo
European Union (UE). H2020
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Ministerio de Economía y Competitividad (MINECO). España
Núñez Martínez, Juan
Avedillo de Juan, María José
Jiménez, Manuel
Quintana Toledo, José María
Todri Sanial, Aida
Corti, Elisabetta
Karg, Siegfried
Linares Barranco, Bernabé
Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo
European Union (UE). H2020
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Ministerio de Economía y Competitividad (MINECO). España
Núñez Martínez, Juan
Avedillo de Juan, María José
Jiménez, Manuel
Quintana Toledo, José María
Todri Sanial, Aida
Corti, Elisabetta
Karg, Siegfried
Linares Barranco, Bernabé
Publication Year :
2021

Abstract

Nano-oscillators based on phase-transition materials are being explored for the implementation of different non-conventional computing paradigms. In particular, vanadium dioxide (VO2) devices are used to design autonomous non-linear oscillators from which oscillatory neural networks (ONNs) can be developed. In this work, we propose a new architecture for ONNs in which sub-harmonic injection locking (SHIL) is exploited to ensure that the phase information encoded in each neuron can only take two values. In this sense, the implementation of ONNs from neurons that inherently encode information with two-phase values has advantages in terms of robustness and tolerance to variability present in VO2 devices. Unlike conventional interconnection schemes, in which the sign of the weights is coded in the value of the resistances, in our proposal the negative (positive) weights are coded using static inverting (non-inverting) logic at the output of the oscillator. The operation of the proposed architecture is shown for pattern recognition applications.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367062482
Document Type :
Electronic Resource