Back to Search Start Over

Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules

Authors :
Universidad de Sevilla. Departamento de Química Física
Marie Skłodowska-Curie Actions (MSCA)
Programa de Atracción del Talento Investigador. Comunidad de Madrid
Ministerio de Economia, Industria y Competitividad (MINECO). España
Consejo Europeo de Investigación (ERC)
Comunidad Autónoma de Madrid
NANOMAGCOST
Villalva, Julia
Develioglu, Aysegul
Montenegro Pohlhammer, Nicolás
Sánchez de Armas, María Rocío
Gamonal, Arturo
Rial, Eduardo
García Hernández, Mar
Ruiz González, Luisa
Sánchez Costa, José
Jiménez Calzado, María del Carmen
Pérez, Emilio M.
Burzuri, Enrique
Universidad de Sevilla. Departamento de Química Física
Marie Skłodowska-Curie Actions (MSCA)
Programa de Atracción del Talento Investigador. Comunidad de Madrid
Ministerio de Economia, Industria y Competitividad (MINECO). España
Consejo Europeo de Investigación (ERC)
Comunidad Autónoma de Madrid
NANOMAGCOST
Villalva, Julia
Develioglu, Aysegul
Montenegro Pohlhammer, Nicolás
Sánchez de Armas, María Rocío
Gamonal, Arturo
Rial, Eduardo
García Hernández, Mar
Ruiz González, Luisa
Sánchez Costa, José
Jiménez Calzado, María del Carmen
Pérez, Emilio M.
Burzuri, Enrique
Publication Year :
2021

Abstract

Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367043770
Document Type :
Electronic Resource