Back to Search Start Over

Evolutionary association rules for total ozone content modeling from satellite observations

Authors :
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC-254: Data Science and Big Data Lab
Martínez Ballesteros, María del Mar
Salcedo Sanz, S.
Riquelme Santos, José Cristóbal
Casanova Mateo, C.
Camacho, J. L.
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC-254: Data Science and Big Data Lab
Martínez Ballesteros, María del Mar
Salcedo Sanz, S.
Riquelme Santos, José Cristóbal
Casanova Mateo, C.
Camacho, J. L.
Publication Year :
2011

Abstract

In this paper we propose an evolutionary method of association rules discovery (EQAR, Evolutionary Quan titative Association Rules) that extends a recently published algorithm by the authors and we describe its ap plication to a problem of Total Ozone Content (TOC) modeling in the Iberian Peninsula. We use TOC data from the Total Ozone Mapping Spectrometer (TOMS) on board the NASA Nimbus-7 satellite measured at three lo cations (Lisbon, Madrid and Murcia) of the Iberian Peninsula. As prediction variables for the association rules we consider several meteorological variables, such as Outgoing Long-wave Radiation (OLR), Temperature at 50 hPa level, Tropopause height, and wind vertical velocity component at 200 hPa. We show that the best as sociation rules obtained by EQAR are able to accurate modeling the TOC data in the three locations consid ered, providing results which agree to previous works in the literature

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367014075
Document Type :
Electronic Resource