Back to Search
Start Over
Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19
- Source :
- Immunity; 1296; 1314.e9; 1074-7613; 6; 53; ~Immunity~1296~1314.e9~~~1074-7613~6~53~~
- Publication Year :
- 2020
-
Abstract
- Contains fulltext : 229265.pdf (Publisher’s version ) (Closed access)<br />Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.
Details
- Database :
- OAIster
- Journal :
- Immunity; 1296; 1314.e9; 1074-7613; 6; 53; ~Immunity~1296~1314.e9~~~1074-7613~6~53~~
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1366701925
- Document Type :
- Electronic Resource