Back to Search Start Over

Bringing high spatial resolution to the far-infrared A giant leap for astrophysics

Bringing high spatial resolution to the far-infrared A giant leap for astrophysics

Authors :
Linz, Hendrik
Beuther, Henrik
Gerin, Maryvonne
Goicoechea, Javier R.
Helmich, Frank
Krause, Oliver
Liu, Yao
Molinari, Sergio
Ossenkopf-Okada, Volker
Pineda, Jorge
Sauvage, Marc
Schinnerer, Eva
van der Tak, Floris
Wiedner, Martina
Amiaux, Jerome
Bhatia, Divya
Buinhas, Luisa
Durand, Gilles
Foerstner, Roger
Graf, Urs
Lezius, Matthias
Linz, Hendrik
Beuther, Henrik
Gerin, Maryvonne
Goicoechea, Javier R.
Helmich, Frank
Krause, Oliver
Liu, Yao
Molinari, Sergio
Ossenkopf-Okada, Volker
Pineda, Jorge
Sauvage, Marc
Schinnerer, Eva
van der Tak, Floris
Wiedner, Martina
Amiaux, Jerome
Bhatia, Divya
Buinhas, Luisa
Durand, Gilles
Foerstner, Roger
Graf, Urs
Lezius, Matthias
Publication Year :
2021

Abstract

The far-infrared (FIR) regime is one of the wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. None of the medium-term satellite projects like SPICA, Millimetron, or the Origins Space Telescope will resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrides, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary discs, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling, and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1364971250
Document Type :
Electronic Resource