Back to Search Start Over

Engineering Three-Dimensional Moire Flat Bands

Authors :
Polímeros y Materiales Avanzados: Física, Química y Tecnología
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia
Xian, Lede
Fischer, Ammon
Claassen, Martin
Zhang, Jin
Rubio Secades, Angel
Kennes, Dante M.
Polímeros y Materiales Avanzados: Física, Química y Tecnología
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia
Xian, Lede
Fischer, Ammon
Claassen, Martin
Zhang, Jin
Rubio Secades, Angel
Kennes, Dante M.
Publication Year :
2021

Abstract

Twisting two adjacent layers of van der Waals materials with respect to each other can lead to flat two-dimensional electronic bands which enables a wealth of physical phenomena. Here, we generalize this concept of so-called moire flat bands to engineer flat bands in all three spatial dimensions controlled by the twist angle. The basic concept is to stack the material such that the large spatial moire interference patterns are spatially shifted from one twisted layer to the next. We exemplify the general concept by considering graphitic systems, boron nitride, and WSe2, but the approach is applicable to any two-dimensional van der Waals material. For hexagonal boron nitride, we develop an ab initio fitted tight binding model that captures the corresponding three-dimensional low-energy electronic structure. We outline that interesting three-dimensional correlated phases of matter can be induced and controlled following this route, including quantum magnets and unconventional superconducting states.

Details

Database :
OAIster
Notes :
This work is supported by the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT124919), and SFB925. A.R. is supported by the Flatiron Institute, a division of the Simons Foundation. We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 1995 within the Priority Program SPP 2244 2DMP under Germany's Excellence Strategy -Cluster of Excellence and Advanced Imaging of Matter (AIM) EXC 2056-390715994 and RTG 2247. L.X. acknowledges the support from Distinguished Junior Fellowship program by the South Bay Interdisciplinary Science Center in the Songshan Lake Materials Laboratory. J.Z. acknowledges funding received from the European Union Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement 886291 (PeSD-NeSL)., English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1364714590
Document Type :
Electronic Resource