Back to Search Start Over

Beyond the State of the Art: Novel Approaches for Thermal and Electrical Transport in Nanoscale Devices

Authors :
Física de materiales
Materialen fisika
Biele, Robert
D’Agosta, Roberto
Física de materiales
Materialen fisika
Biele, Robert
D’Agosta, Roberto
Publication Year :
2019

Abstract

Almost any interaction between two physical entities can be described through the transfer of either charge, spin, momentum, or energy. Therefore, any theory able to describe these transport phenomena can shed light on a variety of physical, chemical, and biological effects, enriching our understanding of complex, yet fundamental, natural processes, e.g., catalysis or photosynthesis. In this review, we will discuss the standard workhorses for transport in nanoscale devices, namely Boltzmann's equation and Landauer's approach. We will emphasize their strengths, but also analyze their limits, proposing theories and models useful to go beyond the state of the art in the investigation of transport in nanoscale devices.

Details

Database :
OAIster
Notes :
This research was funded by the Spanish Ministerio de Economia y Competitividad (MINECO) grant number FIS2016-79464-P (SElecT-DFT) and MINECOG17/A01 (TOWTherm), by the Basque Government (Eusko Jaurlaritza) through the Grupos Consolidados (IT578-13 and IT1249-19). R. B. acknowledges funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 793318. The APC was funded by Dresden University of Technology (TU Dresden)., English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1364710099
Document Type :
Electronic Resource