Back to Search
Start Over
Public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation
- Publication Year :
- 2022
-
Abstract
- We describe a public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation, available at http://flathub.flatironinstitute.org/fire, from the Feedback In Realistic Environments (FIRE) project. FIRE-2 simulations achieve parsec-scale resolution to explicitly model the multi-phase interstellar medium while implementing direct models for stellar evolution and feedback, including stellar winds, core-collapse and Ia supernovae, radiation pressure, photoionization, and photoelectric heating. We release complete snapshots from 3 suites of simulations. The first comprises 20 simulations that zoom in on 14 Milky Way-mass galaxies, 5 SMC/LMC-mass galaxies, and 4 lower-mass galaxies including 1 ultra-faint; we release 39 snapshots across z = 0 - 10. The second comprises 4 massive galaxies, with 19 snapshots across z = 1 - 10. Finally, a high-redshift suite comprises 22 simulations, with 11 snapshots across z = 5 - 10. Each simulation also includes dozens of resolved lower-mass (satellite) galaxies in its zoom-in region. Snapshots include all stored properties for all dark matter, gas, and star particles, including 11 elemental abundances for stars and gas, and formation times (ages) of star particles. We also release accompanying (sub)halo catalogs, which include galaxy properties and member star particles. For the simulations to z = 0, including all Milky Way-mass galaxies, we release the formation coordinates and an "ex-situ" flag for all star particles, pointers to track particles across snapshots, catalogs of stellar streams, and multipole basis expansions for the halo mass distributions. We describe publicly available python packages for reading and analyzing these simulations.<br />Comment: 22 pages. Accepted for publication in ApJS, matches the published version, with updated references. Now includes up to 39 snapshots per simulation and formation coordinates for all star particles. Data available at http://flathub.flatironinstitute.org/fire
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1363559861
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.3847.1538-4365.acb99a