Back to Search Start Over

Molecules with ALMA at Planet-forming Scales (MAPS) IV: Emission Surfaces and Vertical Distribution of Molecules

Authors :
Law, Charles J.
Teague, Richard
Loomis, Ryan A.
Bae, Jaehan
Öberg, Karin I.
Czekala, Ian
Andrews, Sean M.
Aikawa, Yuri
Alarcón, Felipe
Bergin, Edwin A.
Bergner, Jennifer B.
Booth, Alice S.
Bosman, Arthur D.
Calahan, Jenny K.
Cataldi, Gianni
Cleeves, L. Ilsedore
Furuya, Kenji
Guzmán, Viviana V.
Huang, Jane
Ilee, John D.
Gal, Romane Le
Liu, Yao
Long, Feng
Ménard, François
Nomura, Hideko
Pérez, Laura M.
Qi, Chunhua
Schwarz, Kamber R.
Soto, Daniela
Tsukagoshi, Takashi
Yamato, Yoshihide
Hoff, Merel L. R. van't
Walsh, Catherine
Wilner, David J.
Zhang, Ke
Law, Charles J.
Teague, Richard
Loomis, Ryan A.
Bae, Jaehan
Öberg, Karin I.
Czekala, Ian
Andrews, Sean M.
Aikawa, Yuri
Alarcón, Felipe
Bergin, Edwin A.
Bergner, Jennifer B.
Booth, Alice S.
Bosman, Arthur D.
Calahan, Jenny K.
Cataldi, Gianni
Cleeves, L. Ilsedore
Furuya, Kenji
Guzmán, Viviana V.
Huang, Jane
Ilee, John D.
Gal, Romane Le
Liu, Yao
Long, Feng
Ménard, François
Nomura, Hideko
Pérez, Laura M.
Qi, Chunhua
Schwarz, Kamber R.
Soto, Daniela
Tsukagoshi, Takashi
Yamato, Yoshihide
Hoff, Merel L. R. van't
Walsh, Catherine
Wilner, David J.
Zhang, Ke
Publication Year :
2021

Abstract

The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a unique opportunity to study the vertical distribution of gas, chemistry, and temperature in the protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. By using the asymmetry of molecular line emission relative to the disk major axis, we infer the emission height ($z$) above the midplane as a function of radius ($r$). Using this method, we measure emitting surfaces for a suite of CO isotopologues, HCN, and C$_2$H. We find that $^{12}$CO emission traces the most elevated regions with $z/r > 0.3$, while emission from the less abundant $^{13}$CO and C$^{18}$O probes deeper into the disk at altitudes of $z/r \lesssim 0.2$. C$_2$H and HCN have lower opacities and SNRs, making surface fitting more difficult, and could only be reliably constrained in AS 209, HD 163296, and MWC 480, with $z/r \lesssim 0.1$, i.e., relatively close to the planet-forming midplanes. We determine peak brightness temperatures of the optically thick CO isotopologues and use these to trace 2D disk temperature structures. Several CO temperature profiles and emission surfaces show dips in temperature or vertical height, some of which are associated with gaps and rings in line and/or continuum emission. These substructures may be due to local changes in CO column density, gas surface density, or gas temperatures, and detailed thermo-chemical models are necessary to better constrain their origins and relate the chemical compositions of elevated disk layers with those of planet-forming material in disk midplanes. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.<br />Comment: 31 pages, 20 figures, accepted for publication in ApJS, MAPS cross-references updated

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1363552660
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.3847.1538-4365.ac1439