Back to Search Start Over

The large-scale magnetic field of the eccentric pre-main-sequence binary system V1878 Ori

Authors :
Lavail, Alexis
Kochukhov, Oleg
Hussain, Gaitee
Argiroffi, Costanza
Alecian, Evelyne
Morin, Julien
collaboration, the BinaMIcS
Lavail, Alexis
Kochukhov, Oleg
Hussain, Gaitee
Argiroffi, Costanza
Alecian, Evelyne
Morin, Julien
collaboration, the BinaMIcS
Publication Year :
2020

Abstract

We report time-resolved, high-resolution optical spectropolarimetric observations of the young double-lined spectroscopic binary V1878 Ori. Our observations were collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope through the BinaMIcS large programme. V1878 Ori A and B are partially convective intermediate mass weak-line T Tauri stars on an eccentric and asynchronous orbit. We also acquired X-ray observations at periastron and outside periastron. Using the least-squares deconvolution technique (LSD) to combine information from many spectral lines, we clearly detected circular polarization signals in both components throughout the orbit. We refined the orbital solution for the system and obtained disentangled spectra for the primary and secondary components. The disentangled spectra were then employed to determine atmospheric parameters of the two components using spectrum synthesis. Applying our Zeeman Doppler imaging code to composite Stokes $IV$ LSD profiles, we reconstructed brightness maps and the global magnetic field topologies of the two components. We find that V1878 Ori A and B have strikingly different global magnetic field topologies and mean field strengths. The global magnetic field of the primary is predominantly poloidal and non-axisymmetric (with a mean field strength of 180 G). while the secondary has a mostly toroidal and axisymmetric global field (mean strength of 310 G). These findings confirm that stars with very similar parameters can exhibit radically different global magnetic field characteristics. The analysis of the X-ray data shows no sign of enhanced activity at periastron, suggesting the lack of strong magnetospheric interaction at this epoch.<br />Comment: 13 pages, 9 figures, accepted for publication in MNRAS

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1363530242
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1093.mnras.staa1993