Back to Search
Start Over
Discrete element model of particle transport and premixing action in modified screw conveyors
- Source :
- Powder Technology
- Publication Year :
- 2018
-
Abstract
- In this paper, five types of horizontal single-pitch screw conveyors with modified geometry, with three different lengths (400, 600 and 800 mm) were investigated for transport and auxiliary mixing action of two materials: natural zeolite and quartz aggregate (sand) with particle sizes 3, 4 and 5 mm. The geometry of the screw transporter is changed by welding three additional helices oriented in the same or the opposite direction from screw cutting edges, enabling the premixing of materials, during the transport. The proper mixing of the observed materials provides an adequate disposition of zeolite particles within the composite and prevents agglomeration and interference with cement hydration. Zeolite application as a binder in a building material is a possible solution to environmental pollution problems caused by cement production. The influences of screw length, particle diameter, the studied geometry variations of screw design, on the mixing performances of the screw conveyor-mixer during material transport were explored. All investigations were performed experimentally and numerically, by using Discrete Element Method (DEM). The experimental results and the results of the DEM investigation were used for the development of mathematical models for the prediction of mixing quality, which are presented in the form of second order polynomial and artificial neural network model.
Details
- Database :
- OAIster
- Journal :
- Powder Technology
- Notes :
- Powder Technology
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1363259720
- Document Type :
- Electronic Resource