Back to Search Start Over

DEM Modeling of Aging or Creep in Sand Based on the Effects of Microfracturing of Asperities and Evolution of Microstructural Anisotropy during Triaxial Creep

Authors :
Zhang, Zitao
Wang, Yu-hsing
Zhang, Zitao
Wang, Yu-hsing
Publication Year :
2016

Abstract

Aging- or creep-related phenomena in sand have been widely studied, and the discrete element method (DEM) has been frequently used to model the associated soil behavior and then to explore the associated underlying mechanisms. However, several difficulties involved in modeling still remain unsolved. To resolve these difficulties, a new approach based on the effect of the microfracturing of asperities is proposed in this study for the DEM modeling of the sand aging or creep process through several aging cycles of associated reduction in the mobilized friction resistance at particle contacts and subsequent particle rearrangement to reach a new equilibrium state. This approach can be easily incorporated into different contact models and DEM simulations of the loading, unloading, and/or reloading processes, in either drained or undrained conditions, before and/or after aging. This new approach is proven effective because the DEM simulations incorporated with this new approach can satisfactorily reproduce the experimental observations in the triaxial creep process, drained and undrained recompression after aging, and 1D secondary compression and rebound. The simulation results also indicate that, based on the stress–force–fabric relationship, the contribution from the contact normal anisotropy to the deviatoric stress q gradually increases, whereas the contribution from the tangential force anisotropy becomes less during triaxial creep under a constant q. Moreover, the contacts between particles are gradually away from the state where the frictional resistance is fully mobilized, and then become more stable. During the subsequent triaxial recompression after creep, the aged samples exhibit enhanced soil stiffness, which is also found to be associated with the evolution of the invariants of the anisotropy tensors. It is worthwhile noting that the aging or creep effects on the microstructural changes, e.g., the invariants of the anisotropy tensors, can be gradually erased

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1363069472
Document Type :
Electronic Resource