Back to Search
Start Over
Structural and functional characterization of a MATE family multidrug resistance transporter from 'Pyrococcus furiosus'
- Publication Year :
- 2020
-
Abstract
- The members of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) transporter superfamily mediate export of a wealth of molecules of physiological and pharmacological importance. According to the Transporter Classification Database (TCDB), the MOP superfamily is mainly categorized into six distantly related families functionally characterized families: the multidrug and toxic compound extrusion (MATE), the polysaccharide transporter (PST), the oligosaccharidyl-lipid flippase (OLF), the mouse virulence factor (MVF) the agrocin 84 antibiotic exporter (AgnG), and the progressive ankylosis (Ank) family. Among these, the multidrug resistance MATE family transporters are most ubiquitous, being present in all domains of life: Archaea, Bacteria and Eukarya. As secondary active transporters, they utilize transmembrane electrochemical ion gradients of Na+ and/or H+ in order to drive the efflux of xenobiotics or cytotoxic metabolic waste products with specificity mainly for polyaromatic and cationic substrates. Active efflux of drugs and toxic compounds carried out by multidrug transporters is one of the strategies developed by bacterial pathogens to confer multidrug resistance. MATE proteins provide resistance to, e.g., fluoroquinolone, aminoglycoside antibiotics, and anticancer chemotherapeutical agents, thus serving as promising pharmacological targets for tackling a severe global health issue. Based on their amino acid sequence similarity, the MATE family members are classified into the NorM, the DNA-damage-inducible protein F (DinF), and the eukaryotic subfamilies. Structural information on the alternate conformational states and knowledge of the detailed mechanism of the MATE transport are of great importance for the structure-aided drug design. Over the past decade, the crystal structures of representative members of the NorM, DinF and eukaryotic subfamilies have been presented. They all share similar overall architecture comprising 12 transmembrane helices (TMs)
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1362811115
- Document Type :
- Electronic Resource