Back to Search Start Over

Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus

Authors :
Wyss, Lena
Schäfer, Julia
Liebner, Stefan
Mittelbronn, Michel Guy André
Deutsch, Urban
Enzmann, Gaby
Adams, Ralf Heinrich
Aurrand-Lions, Michel
Plate, Karl
Imhof, Beat A.
Engelhardt, Britta
Wyss, Lena
Schäfer, Julia
Liebner, Stefan
Mittelbronn, Michel Guy André
Deutsch, Urban
Enzmann, Gaby
Adams, Ralf Heinrich
Aurrand-Lions, Michel
Plate, Karl
Imhof, Beat A.
Engelhardt, Britta
Publication Year :
2012

Abstract

The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1362761349
Document Type :
Electronic Resource