Back to Search
Start Over
A cost-effective and reliable method to predict mechanical stress in single-use and standard pumps
- Publication Year :
- 2018
-
Abstract
- The suitability of oil-water emulsions to predict shear forces in stirred bioreactors under cost-effective and time-saving conditions has been demonstrated several times, but no application to pumps has been described so far. In this report, the drop sizes in a model oil-water system were determined for the Levitronix PuraLev® MU series (PuraLev® 200MU and PuraLev® 600MU), a peristaltic pump (Masterflex® I/P Easy Load), and a 4-piston diaphragm pump (Quattroflow 1200-SU) using inline endoscopy. It was determined that the Sauter mean diameter could be used as a comparison criterion to estimate mechanical stress in pumps. The investigation showed that PuraLev® MU pumps are characterized by up to 59 % larger Sauter mean diameters than their counterparts at comparable operational conditions. This indicates lower hydrodynamic stress in the PuraLev® MU pumps. Using computational fluid dynamics (CFD), a well-streamlined fluid flow and low turbulent energy dissipation rates (TEDR) were found in the PuraLev® MU pumps, which correlated well with experimental results. A calculation model was used to predict the Sauter mean diameter by combining both experimental and CFD data. Good agreement with deviations below 13% was determined between model predictions and experimental data.
Details
- Database :
- OAIster
- Notes :
- Engineering in Life Sciences, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1362725178
- Document Type :
- Electronic Resource