Back to Search Start Over

The South Pacific Convergence Zone as Depicted in Reanalysis and Satellite Products

Authors :
Renwick, James
Lorrey, Andrew
Harvey Thomas Luke
Renwick, James
Lorrey, Andrew
Harvey Thomas Luke
Publication Year :
2018

Abstract

The South Pacific Convergence Zone (SPCZ) is the largest rainfall feature in the Southern Hemisphere, and is a critical component of the climate of Southwest Pacific Island nations. The small size and isolated nature of these islands leaves them vulnerable to short and long term changes in the position of the SPCZ. Its location and strength is strongly modulated by the El Niño-Southern Oscillation (ENSO) cycle and the Inter-decadal Pacific Oscillation (IPO), leading to large inter-annual and decadal variability in rainfall across the Southwest Pacific. Much of the analysis on the SPCZ has been restricted to the modern period, more specifically the “satellite era”, starting in 1979. Here, the representation of the SPCZ in the Twentieth Century Reanalysis (20CR) product, which reconstructs the three-dimensional state of the atmosphere based only on surface observations is discussed. The performance of two versions of the 20CR (versions 2 and 2c) in the satellite era is tested via inter-comparison with other reanalysis and observational satellite products, before using 20CR version 2c (20CRv2c) to perform extended analysis back to the early twentieth century. This study demonstrates that 20CR performs well in the satellite era, and is considered suitable for extended analysis. It is established that extra data added in the SPCZ region between 20CR versions 2 and 2c has improved the representation of the SPCZ during 1908-1958. Well-established relationships between ENSO and the IPO with the SPCZ are shown to be present through the entire 1908-2011 period, although it is suggested that the physical link between the IPO and the SPCZ has changed between the first and second half of the twentieth century. Finally, evidence of a southward trend of the SPCZ over the past century is presented, potentially due to an expansion of the tropics as a result of climate change.

Details

Database :
OAIster
Notes :
en_NZ
Publication Type :
Electronic Resource
Accession number :
edsoai.on1361890111
Document Type :
Electronic Resource