Back to Search Start Over

Molecular, Cellular and Mechanical basis of Epithelial Morphogenesis during Tribolium Embryogenesis

Authors :
Tomancak, Pavel
Grill, Stephan
Technische Universität Dresden
Jain, Akanksha
Tomancak, Pavel
Grill, Stephan
Technische Universität Dresden
Jain, Akanksha
Publication Year :
2017

Abstract

Embryonic development entails a series of morphogenetic events which require a precise coordination of molecular mechanisms coupled with cellular dynamics. Phyla such as arthropods show morphological and gene expression similarities during middle embryogenesis (at the phylotypic germband stage), yet early embryogenesis adopts diverse developmental strategies. In an effort towards understanding patterns of conservation and divergence during development, investigations are required beyond the traditional model systems. Therefore, in the past three decades, several insect species representing various insect orders have been established as experimental model systems for comparative developmental studies. Among these, the red flour beetle Tribolium castaneum has emerged as the best studied holometabolous insect model after the fruit fly Drosophila melanogaster. Unlike Drosophila, Tribolium is a short-germ insect that retains many ancestral characters common to most insects. The early embryogenesis of Tribolium shows dynamic epithelial rearrangements with an epibolic expansion of the extraembryonic tissue serosa over the embryo, the folding of the embryo in between the serosa and the second extra embryonic tissue amnion and the folding of the amnion underneath the embryo. These extensive tissues are evolutionarily conserved epithelia that undergo different tissue movements and are present in varying proportions in different insects, providing exceptional material to compare and contrast morphogenesis during early embryogenesis. However, most of the previous work on insects including Tribolium have largely focused on the conservation and divergence of gene expression patterns and on gene regulatory interactions. Consequently, very little studies on dynamic cell behaviour have been done and we lack detailed information about the cellular and tissue dynamics during these early morphogenetic events. During my PhD, I first established a live imaging and data analysis pipeline

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1358810449
Document Type :
Electronic Resource