Back to Search
Start Over
Co-Degeneracy and Co-Treewidth: Using the Complement to Solve Dense Instances
- Publication Year :
- 2021
-
Abstract
- Clique-width and treewidth are two of the most important and useful graph parameters, and several problems can be solved efficiently when restricted to graphs of bounded clique-width or treewidth. Bounded treewidth implies bounded clique-width, but not vice versa. Problems like Longest Cycle, Longest Path, MaxCut, Edge Dominating Set, and Graph Coloring are fixed-parameter tractable when parameterized by the treewidth, but they cannot be solved in FPT time when parameterized by the clique-width unless FPT = W[1], as shown by Fomin, Golovach, Lokshtanov, and Saurabh [SIAM J. Comput. 2010, SIAM J. Comput. 2014]. For a given problem that is fixed-parameter tractable when parameterized by treewidth, but intractable when parameterized by clique-width, there may exist infinite families of instances of bounded clique-width and unbounded treewidth where the problem can be solved efficiently. In this work, we initiate a systematic study of the parameters co-treewidth (the treewidth of the complement of the input graph) and co-degeneracy (the degeneracy of the complement of the input graph). We show that Longest Cycle, Longest Path, and Edge Dominating Set are FPT when parameterized by co-degeneracy. On the other hand, Graph Coloring is para-NP-complete when parameterized by co-degeneracy but FPT when parameterized by the co-treewidth. Concerning MaxCut, we give an FPT algorithm parameterized by co-treewidth, while we leave open the complexity of the problem parameterized by co-degeneracy. Additionally, we show that Precoloring Extension is fixed-parameter tractable when parameterized by co-treewidth, while this problem is known to be W[1]-hard when parameterized by treewidth. These results give evidence that co-treewidth is a useful width parameter for handling dense instances of problems for which an FPT algorithm for clique-width is unlikely to exist. Finally, we develop an algorithmic framework for co-degeneracy based on the notion of Bondy-Chvátal closure.
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1358729231
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.4230.LIPIcs.MFCS.2021.42