Back to Search Start Over

Parameterized Complexity of Conflict-Free Matchings and Paths

Authors :
Akanksha Agrawal and Pallavi Jain and Lawqueen Kanesh and Saket Saurabh
Agrawal, Akanksha
Jain, Pallavi
Kanesh, Lawqueen
Saurabh, Saket
Akanksha Agrawal and Pallavi Jain and Lawqueen Kanesh and Saket Saurabh
Agrawal, Akanksha
Jain, Pallavi
Kanesh, Lawqueen
Saurabh, Saket
Publication Year :
2019

Abstract

An input to a conflict-free variant of a classical problem Gamma, called Conflict-Free Gamma, consists of an instance I of Gamma coupled with a graph H, called the conflict graph. A solution to Conflict-Free Gamma in (I,H) is a solution to I in Gamma, which is also an independent set in H. In this paper, we study conflict-free variants of Maximum Matching and Shortest Path, which we call Conflict-Free Matching (CF-Matching) and Conflict-Free Shortest Path (CF-SP), respectively. We show that both CF-Matching and CF-SP are W[1]-hard, when parameterized by the solution size. Moreover, W[1]-hardness for CF-Matching holds even when the input graph where we want to find a matching is itself a matching, and W[1]-hardness for CF-SP holds for conflict graph being a unit-interval graph. Next, we study these problems with restriction on the conflict graphs. We give FPT algorithms for CF-Matching when the conflict graph is chordal. Also, we give FPT algorithms for both CF-Matching and CF-SP, when the conflict graph is d-degenerate. Finally, we design FPT algorithms for variants of CF-Matching and CF-SP, where the conflicting conditions are given by a (representable) matroid.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1358725722
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.4230.LIPIcs.MFCS.2019.35