Back to Search Start Over

Estimation of ultimate strength of slender ccfst columns using artificial neural networks

Authors :
Đorđević, Filip
Kostić, Svetlana M.
Đorđević, Filip
Kostić, Svetlana M.
Source :
16th Congress of Association of Structural Engineers of Serbia
Publication Year :
2022

Abstract

This paper proposes the use of artificial neural network (ANN) algorithms to estimate the ultimate compressive strength of slender circular concrete-filled steel tubular (CCFST) columns. A dataset of 1051 samples was applied to generate an appropriate ANN prognostic model. Empirical equations were also developed from the best neural network, and their results were compared with those obtained by Eurocode 4 (EC4) design code. Analyses show that the proposed ANN model has a better agreement with experimental results than those created with provisions of the EC4 design code.

Details

Database :
OAIster
Journal :
16th Congress of Association of Structural Engineers of Serbia
Notes :
16th Congress of Association of Structural Engineers of Serbia, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1358253816
Document Type :
Electronic Resource