Back to Search Start Over

Nanostructured functional metal oxide-based catalysts for direct ethanol fuel cells.

Publication Year :
2017

Abstract

La transcription des symboles et des caractères spéciaux utilisés dans la version originale de ce résumé n’a pas été possible en raison de limitations techniques. La version correcte de ce résumé peut être lue en PDF.Rising energy demands, depletion of fossil fuel reserves and environmental deteriorations, have spurred great interest in searching for energy conversion devices with high efficiency and low greenhouse gas emissions. Fuel cells powered by hydrogen (H2) or H-rich fuels (such as methanol, ethanol, ethylene glycol, etc.) have been regarded as promising alternative energy conversion devices to ease our concerns about fossil energy and the environment. Among various available fuels, ethanol becomes a more attractive fuel compared with H2 and other organic fuels. At room temperature, ethanol is in the liquid state and, unlike hydrogen, can be easily stored and transported using the current gasoline infrastructure with only slight modifications. Furthermore, it has more advantages than other liquid fuels including low toxicity, high energy density (8.0 kWh/kg), biocompatibility and wide availability from renewable resources like from sugar cane, wheat, corn, or even straw and algae. Despite these advantages, the use of ethanol in fuel cells and ultimately realizing the commercialization of direct ethanol fuel cells (DEFCs) are still being hampered by several challenges, especially the difficulties from the development of anode catalysts which are listed as follows: (i) high cost of electrocatalysts. Platinum (Pt) is the most commonly used catalysts for ethanol oxidation, but as Pt is scarce and expensive, the high loading of Pt in electrodes becomes a critical obstacle limiting the successful commercialization of DEFCs; (ii) sluggish electrochemical kinetics; (iii) low poisoning resistance to reaction intermediates (like COads); and (iv) difficulties associated with breaking the C-C bond in order to achieve the complete ethanol oxidation to CO2. Therefore, mor

Details

Database :
OAIster
Notes :
Wang, Youling
Publication Type :
Electronic Resource
Accession number :
edsoai.on1358180222
Document Type :
Electronic Resource