Back to Search
Start Over
Parametric exploration of zero-energy modes in three-terminal InSb-Al nanowire devices
- Publication Year :
- 2022
-
Abstract
- We systematically study three-terminal InSb-Al nanowire devices by using radio-frequency reflectometry. Tunneling spectroscopy measurements on both ends of the hybrid nanowires are performed while systematically varying the chemical potential, magnetic field, and junction transparencies. Identifying the lowest-energy state allows for the construction of the lowest- and zero-energy state diagrams, which show how the states evolve as a function of the aforementioned parameters. Importantly, comparing the diagrams taken for each end of the hybrids enables the identification of states which do not coexist simultaneously, ruling out a significant amount of the parameter space as candidates for a topological phase. Furthermore, altering junction transparencies filters out zero-energy states sensitive to a local gate potential. Such a measurement strategy significantly reduces the time necessary to identify a potential topological phase and minimizes the risk of falsely recognizing trivial bound states as Majorana zero modes.<br />QRD/Kouwenhoven Lab<br />BUS/Quantum Delft<br />QN/Afdelingsbureau<br />QCD/Veldhorst Lab<br />QN/Kouwenhoven Lab
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1357880306
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1103.PhysRevB.106.075306