Back to Search Start Over

Modeling and reconstruction of time series of passive microwave data by Discrete Fourier Transform guided filtering and Harmonic Analysis

Authors :
Shang, H. (author)
Jia, L. (author)
Menenti, M. (author)
Shang, H. (author)
Jia, L. (author)
Menenti, M. (author)
Publication Year :
2016

Abstract

Daily time series of microwave radiometer data obtained in one-orbit direction are full of observation gaps due to satellite configuration and errors from spatial sampling. Such time series carry information about the surface signal including surface emittance and vegetation attenuation, and the atmospheric signal including atmosphere emittance and atmospheric attenuation. To extract the surface signal from this noisy time series, the Time Series Analysis Procedure (TSAP) was developed, based on the properties of the Discrete Fourier Transform (DFT). TSAP includes two stages: (1) identify the spectral features of observation gaps and errors and remove them with a modified boxcar filter; and (2) identify the spectral features of the surface signal and reconstruct it with the Harmonic Analysis of Time Series (HANTS) algorithm. Polarization Difference Brightness Temperature (PDBT) at 37 GHz data were used to illustrate the problems, to explain the implementation of TSAP and to validate this method, due to the PDBT sensitivity to the water content both at the land surface and in the atmosphere. We carried out a case study on a limited heterogeneous crop land and lake area, where the power spectrum of the PDBT time series showed that the harmonic components associated with observation gaps and errors have periods ≤8 days. After applying the modified boxcar filter with a length of 10 days, the RMSD between raw and filtered time series was above 11 K, mainly related to the power reduction in the frequency range associated with observation gaps and errors. Noise reduction is beneficial when applying PDBT observations to monitor wet areas and open water, since the PDBT range between dryland and open water is about 20 K. The spectral features of the atmospheric signal can be revealed by time series analysis of rain-gauge data, since the PDBT at 37 GHz is mainly attenuated by hydrometeors that yield precipitation. Thus, the spectral features of the surface signal were ident<br />Optical and Laser Remote Sensing

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1357855413
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.3390.rs8110970