Back to Search
Start Over
Macroscopic quantum phenomena in superconductors: study of phase dynamics and dissipation in moderately damped Josephson junctions
- Publication Year :
- 2013
-
Abstract
- The topic of the PhD project is a comparative study of phase dynamics and macroscopic quantum phenomena in moderately damped NbN, YBaCuO grain boundary (GB) Josephson junctions (JJs) and hybrid devices. This type of research activity responds to the needs of better identifying phase dynamics in JJs in the moderately damped regime, which is going to be more and more common in hybrid nanostructures. Issues on a more detailed understanding of coherence, dissipation and noise in the various devices have a relevant role in the progress of quantum circuits. In the last few years, studies of phase dynamics and macroscopic quantum phenomena have been extended to junctions composed of materials other than the traditional low critical temperature superconductors (LTS) and to novel types of structures with unconventional barriers composed for instance of graphene sheets or of grain boundaries. Progress in engineering new materials into junctions and in understanding and controlling the physics of interfaces may offer novel solutions for junctions of superior quality and complementary functionalities, and therefore may lead in the long run to improve also specific qubit performances. For LTS JJs, once the barrier thickness and the critical current density (Jc) have been fixed, a reduction in its size unavoidably leads to a lowering of the critical current and determines a quite different phase dynamics re-normalized to the new scaling energy. Lower critical currents Ic result in lower Josephson energies EJ, and higher levels of dissipation are expected. The range of the energy dynamical parameters is significantly enlarged, and it is technologically easier to reproducibly realize nontrivial configurations. These devices are characterized by intermediate levels of dissipation (moderately damped regime) and by phase diffusion phenomena. The low Jc limit seems to be characteristic also of all futuristic nanohybrids devices incorporating nanowires, and the moderately damped regime
Details
- Database :
- OAIster
- Notes :
- text, Italian, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1357575823
- Document Type :
- Electronic Resource