Back to Search Start Over

Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects

Authors :
Howe, Laurence J.
Nivard, Michel G.
Morris, Tim T.
Hansen, Ailin F.
Rasheed, Humaira
Cho, Yoonsu
Chittoor, Geetha
Ahlskog, Rafael
Lind, Penelope A.
Palviainen, Teemu
van der Zee, Matthijs D.
Cheesman, Rosa
Mangino, Massimo
Wang, Yunzhang
Li, Shuai
Klaric, Lucija
Ratliff, Scott M.
Bielak, Lawrence F.
Nygaard, Marianne
Giannelis, Alexandros
Willoughby, Emily A.
Reynolds, Chandra A.
Balbona, Jared
Andreassen, Ole A.
Ask, Helga
Baras, Aris
Bauer, Christopher R.
Boomsma, Dorret
Campbell, Archie
Campbell, Harry
Chen, Zhengming
Christofidou, Paraskevi
Corfield, Elizabeth
Dahm, Christina C.
Dokuru, Deepika R.
Evans, Luke M.
de Geus, Eco J. C.
Giddaluru, Sudheer
Gordon, Scott D.
Harden, K. Paige
Hill, W. David
Hughes, Amanda
Kerr, Shona M.
Kim, Yongkang
Kweon, Hyeokmoon
Latvala, Antti
Lawlor, Deborah A.
Li, Liming
Lin, Kuang
Magnus, Per
Magnusson, Patrik K. E.
Mallard, Travis T.
Martikainen, Pekka
Mills, Melinda C.
Njolstad, Pal Rasmus
Overton, John D.
Pedersen, Nancy L.
Porteous, David J.
Reid, Jeffrey
Silventoinen, Karri
Southey, Melissa C.
Stoltenberg, Camilla
Tucker-Drob, Elliot M.
Wright, Margaret J.
Hewitt, John K.
Keller, Matthew C.
Stallings, Michael C.
Lee, James J.
Christensen, Kaare
Kardia, Sharon L. R.
Peyser, Patricia A.
Smith, Jennifer A.
Wilson, James F.
Hopper, John L.
Hagg, Sara
Spector, Tim D.
Pingault, Jean-Baptiste
Plomin, Robert
Havdahl, Alexandra
Bartels, Meike
Martin, Nicholas G.
Oskarsson, Sven
Justice, Anne E.
Millwood, Iona Y.
Hveem, Kristian
Naess, Oyvind
Willer, Cristen J.
Asvold, Bjorn Olav
Koellinger, Philipp D.
Kaprio, Jaakko
Medland, Sarah E.
Walters, Robin G.
Benjamin, Daniel J.
Turley, Patrick
Evans, David M.
Smith, George Davey
Hayward, Caroline
Brumpton, Ben
Hemani, Gibran
Davies, Neil M.
Howe, Laurence J.
Nivard, Michel G.
Morris, Tim T.
Hansen, Ailin F.
Rasheed, Humaira
Cho, Yoonsu
Chittoor, Geetha
Ahlskog, Rafael
Lind, Penelope A.
Palviainen, Teemu
van der Zee, Matthijs D.
Cheesman, Rosa
Mangino, Massimo
Wang, Yunzhang
Li, Shuai
Klaric, Lucija
Ratliff, Scott M.
Bielak, Lawrence F.
Nygaard, Marianne
Giannelis, Alexandros
Willoughby, Emily A.
Reynolds, Chandra A.
Balbona, Jared
Andreassen, Ole A.
Ask, Helga
Baras, Aris
Bauer, Christopher R.
Boomsma, Dorret
Campbell, Archie
Campbell, Harry
Chen, Zhengming
Christofidou, Paraskevi
Corfield, Elizabeth
Dahm, Christina C.
Dokuru, Deepika R.
Evans, Luke M.
de Geus, Eco J. C.
Giddaluru, Sudheer
Gordon, Scott D.
Harden, K. Paige
Hill, W. David
Hughes, Amanda
Kerr, Shona M.
Kim, Yongkang
Kweon, Hyeokmoon
Latvala, Antti
Lawlor, Deborah A.
Li, Liming
Lin, Kuang
Magnus, Per
Magnusson, Patrik K. E.
Mallard, Travis T.
Martikainen, Pekka
Mills, Melinda C.
Njolstad, Pal Rasmus
Overton, John D.
Pedersen, Nancy L.
Porteous, David J.
Reid, Jeffrey
Silventoinen, Karri
Southey, Melissa C.
Stoltenberg, Camilla
Tucker-Drob, Elliot M.
Wright, Margaret J.
Hewitt, John K.
Keller, Matthew C.
Stallings, Michael C.
Lee, James J.
Christensen, Kaare
Kardia, Sharon L. R.
Peyser, Patricia A.
Smith, Jennifer A.
Wilson, James F.
Hopper, John L.
Hagg, Sara
Spector, Tim D.
Pingault, Jean-Baptiste
Plomin, Robert
Havdahl, Alexandra
Bartels, Meike
Martin, Nicholas G.
Oskarsson, Sven
Justice, Anne E.
Millwood, Iona Y.
Hveem, Kristian
Naess, Oyvind
Willer, Cristen J.
Asvold, Bjorn Olav
Koellinger, Philipp D.
Kaprio, Jaakko
Medland, Sarah E.
Walters, Robin G.
Benjamin, Daniel J.
Turley, Patrick
Evans, David M.
Smith, George Davey
Hayward, Caroline
Brumpton, Ben
Hemani, Gibran
Davies, Neil M.
Publication Year :
2022

Abstract

Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects. Within-sibship genome-wide association analyses using data from 178,076 siblings illustrate differences between population-based and within-sibship GWAS estimates for phenotypes influenced by demographic and indirect genetic effects.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1356421711
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1038.s41588-022-01062-7