Back to Search Start Over

Hamiltonian facets of classical gauge theories on E-manifolds

Authors :
Universitat Politècnica de Catalunya. Doctorat en Física Computacional i Aplicada
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Mir Garcia, Pau
Miranda Galcerán, Eva
Nicolás Martínez, Pablo
Universitat Politècnica de Catalunya. Doctorat en Física Computacional i Aplicada
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Mir Garcia, Pau
Miranda Galcerán, Eva
Nicolás Martínez, Pablo
Publication Year :
2022

Abstract

Manifolds with boundary, with corners, b-manifolds and foliations model configuration spaces for particles moving under constraints and can be described as E-manifolds. E-manifolds were introduced in [NT01] and investigated in depth in [MS20]. In this article we explore their physical facets by extending gauge theories to the E-category. Singularities in the configuration space of a classical particle can be described in several new scenarios unveiling their Hamiltonian aspects on an E-symplectic manifold. Following the scheme inaugurated in [Wei78], we show the existence of a universal model for a particle interacting with an E-gauge field. In addition, we generalize the description of phase spaces in Yang-Mills theory as Poisson manifolds and their minimal coupling procedure, as shown in [Mon86], for base manifolds endowed with an E-structure. In particular, the reduction at coadjoint orbits and the shifting trick are extended to this framework. We show that Wong's equations, which describe the interaction of a particle with a Yang-Mills field, become Hamiltonian in the E-setting. We formulate the electromagnetic gauge in a Minkowski space relating it to the proper time foliation and we see that our main theorem describes the minimal coupling in physical models such as the compactified black hole.<br />Preprint

Details

Database :
OAIster
Notes :
38 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1355848247
Document Type :
Electronic Resource