Back to Search Start Over

Robust fault detection using zonotopic parameter estimation

Authors :
Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
Samada Rigo, Sergio Emil
Puig Cayuela, Vicenç
Nejjari Akhi-Elarab, Fatiha
Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
Samada Rigo, Sergio Emil
Puig Cayuela, Vicenç
Nejjari Akhi-Elarab, Fatiha
Publication Year :
2022

Abstract

This paper addresses the system identification problem, as well as its application to robust fault detection, considering parametric uncertainty and using zonotopes. As a result, a Zonotopic Recursive Least Squares (ZRLS) estimator is proposed and compared with the Setmembership (SM) approach when applied to fault detection, taking as a reference the minimum detectable fault generated in the worst-case. To illustrate the effectiveness of the proposed robust parameter estimation and fault detection methodologies, a quadruple tank process is employed.<br />This work has been co-financed by the Spanish State Research Agency (AEI) and the European Regional De- velopment Fund (ERFD) through the project SaCoAV (ref. MINECO PID2020-114244RB-I00 ), by the European Regional Development Fund of the European Union in the framework of the ERDF Operational Program of Catalo- nia 2014-2020 (ref. 001-P-001643 Looming Factory) and by the DGR of Generalitat de Catalunya (SAC group ref. 2017/SGR/482). The author is also supported by a FI AGAUR grant (Ref. 2021FI-B1 00097).<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
6 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1355843551
Document Type :
Electronic Resource