Back to Search
Start Over
Understanding microstructure-mechanical properties relationship in ZrO2-SiO2 nanocrystalline glass-ceramics : The effect of ZrO2 content
- Publication Year :
- 2022
-
Abstract
- The content of crystalline phase plays a significant role in manipulating the microstructure and mechanical properties of glass-ceramics. This study aims at exploring the optimum content of crystalline phase in ZrO2-SiO2 nanocrystalline glass-ceramics (NCGCs) in terms of obtaining the highest mechanical properties. To this end, the mechanical properties of ZrO2-SiO2 NCGCs with 70 mol%, 75 mol%, 80 mol% ZrO2 were tested and compared with those of the previously prepared NCGCs with ZrO2 content ranging from 35 mol% to 65 mol%. Results showed that 65 mol% was the optimum content of ZrO2 in terms of obtaining the highest flexural strength. The flexural strength of NCGCs with ZrO2 content over 65 mol% was lower than that of the NCGCs with 65 mol% ZrO2. This was because the NCGC with 65 mol% ZrO2 had a homogenous microstructure, with ZrO2 nano crystallites homogeneously distributed in an amorphous SiO2 matrix. Whereas, when ZrO2 content was increased to 75 mol%, ZrO2 nanocrystallites were not homogeneously distributed in the SiO2 matrix anymore. The formation of SiO2 "holes/canyon " due to ZrO2 grain coalescence resulted in the decrease of flexural strength. The fracture mechanism and wear properties of the NCGCs were also investigated.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1349079688
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1016.j.msea.2022.142904