Back to Search Start Over

Structural Characterization Study of a Lipid Nanocapsule Formulation Intended for Drug Delivery Applications Using Small-Angle Scattering Techniques

Authors :
Urimi, Dileep
Hellsing, Maja
Mahmoudi, Najet
Soderberg, Christopher
Widenbring, Ronja
Gedda, Lars
Edwards, Katarina
Loftsson, Thorsteinn
Schipper, Nicolaas
Urimi, Dileep
Hellsing, Maja
Mahmoudi, Najet
Soderberg, Christopher
Widenbring, Ronja
Gedda, Lars
Edwards, Katarina
Loftsson, Thorsteinn
Schipper, Nicolaas
Publication Year :
2022

Abstract

Lipid nanocapsules (LNCs) are increasingly being used for various drug delivery applications due to their versatile nature and ability to carry a wide variety of therapeutic drug molecules. In the present investigation, small-angle X-ray (SAXS) and neutron scattering (SANS) techniques were used to elucidate the structure of LNCs. Overall, size measurements obtained from SAXS and SANS techniques were complemented with dynamic light scattering, zeta potential, and cryogenic transmission electron microscopy measurements. The structural aspects of LNCs can be affected by drug loading and the properties of the drug. Here, the impact of drug loading on the overall structure was evaluated using DF003 as a model drug molecule. LNCs with varying compositions were prepared using a phase inversion method. Combined analysis of SAXS and SANS measurements indicated the presence of a core-shell structure in the LNCs. Further, the drug loading did not alter the overall core-shell structure of the LNCs. SANS data revealed that the core size remained unchanged with a radius of 20.0 +/- 0.9 nm for unloaded LNCs and 20.2 +/- 0.6 nm for drug-loaded LNCs. Furthermore, interestingly, the shell becomes thicker in an order of similar to 1 nm in presence of the drug compared to the shell thickness of unloaded LNCs as demonstrated by SAXS data. This can be correlated with the strong association of hydrophilic DF003 with Kolliphor HS 15, a polyethylene glycol-based surfactant that predominantly makes up the shell, resulting in a drug-rich hydrated shell.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1349079626
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1021.acs.molpharmaceut.1c00648