Back to Search Start Over

An epilepsy-associated KV1.2 charge-transfer-center mutation impairs KV1.2 and KV1.4 trafficking

Publication Year :
2022

Abstract

Significance: A child with epilepsy has a previously unreported, heterozygous mutation in KCNA2, the gene encoding KV1.2 proteins. Four KV1.2 assemble into a potassium-selective channel, a protein complex at the neuronal cell surface regulating electrical signaling. KV1.2 subunits assemble with other KV1-family members to form heterotetrameric channels, contributing to neuronal potassium-channel diversity. The most striking consequence of this mutation is preventing KV1.2-subunit trafficking, i.e., their ability to reach the cell surface. Moreover, the mutation is dominant negative, as mutant subunits can assemble with wild-type KV1.2 and KV1.4, trapping them into nontrafficking heterotetramers and decreasing their functional expression. Thus, KV1-family genes’ ability to form heterotetrameric channels is a double-edged sword, rendering KV1-family members vulnerable to dominant-negative mutations in a single member gene. Abstract: We report on a heterozygous KCNA2 variant in a child with epilepsy. KCNA2 encodes KV1.2 subunits, which form homotetrameric potassium channels and participate in heterotetrameric channel complexes with other KV1-family subunits, regulating neuronal excitability. The mutation causes substitution F233S at the KV1.2 charge transfer center of the voltage-sensing domain. Immunocytochemical trafficking assays showed that KV1.2(F233S) subunits are trafficking deficient and reduce the surface expression of wild-type KV1.2 and KV1.4: a dominant-negative phenotype extending beyond KCNA2, likely profoundly perturbing electrical signaling. Yet some KV1.2(F233S) trafficking was rescued by wild-type KV1.2 and KV1.4 subunits, likely in permissible heterotetrameric stoichiometries: electrophysiological studies utilizing applied transcriptomics and concatemer constructs support that up to one or two KV1.2(F233S) subunits can participate in trafficking-capable heterotetramers with wild-type KV1.2 or KV1.4, respectively, and that both early and late events a

Details

Database :
OAIster
Notes :
Nilsson, Michelle, Lindström, Sarah H, Kaneko, Maki, Wang, Kaiqian, Minguez-Viñas, Teresa, Angelini, Marina, Steccanella, Federica, Holder, Deborah, Ottolia, Michela, Olcese, Riccardo, Pantazis, Antonios
Publication Type :
Electronic Resource
Accession number :
edsoai.on1349052565
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1073.pnas.2113675119