Back to Search
Start Over
Phenological Shifts in a Warming World Affect Physiology and Life History in a Damselfly
- Publication Year :
- 2022
-
Abstract
- Simple Summary Climate warming affects phenological events of cold-blooded organisms. In this analysis we studied, in laboratory conditions, the impact of warming and hatching dates on key life history and physiological traits in a cannibalistic damselfly, Ischnura elegans. Larvae were reared in groups from hatching to emergence through one or two growth seasons, depending on the voltinism. Larvae were equally divided by hatching dates (early and late) and temperature treatment (current and warming). Early and late hatched groups were not mixed. Despite no difference in cannibalism rate between different hatching dates and temperatures, early hatched larvae reared under warming had elevated immune function measured as phenoloxidase (PO) activity. This increased PO activity was not traded off with life history traits. Instead, age and mass at emergence, and growth rate were mainly affected by temperature and voltinism. Our results confirm the importance of phenological shifts in a warming world for shaping physiology and life history in a freshwater insect. Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univol
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1348927956
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.3390.insects13070622