Back to Search Start Over

Entangled core/shell magnetic structure driven by surface magnetic symmetry-breaking in Cr2O3 nanoparticles

Authors :
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
European Commission
Principado de Asturias
Elettra Sincrotrone Trieste
Institut Laue-Langevin
Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
Department of Energy (US)
International Center for Materials Science (US)
Czech Grant Agency
Eusko Jaurlaritza
Rinaldi-Montes, Natalia
Gorria, Pedro
Fuertes Arias, Antonio Benito
Martínez-Blanco, David
Amghouz, Zakariae
Puente-Orench, Inés
Olivi, Luca
Herrero Martín, Javier
Fernández-García, María Paz
Alonso, Javier
Phan, Manh-Huong
Srikanth, Hariharan
Marti, Xavi
Blanco, Jesús A.
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
European Commission
Principado de Asturias
Elettra Sincrotrone Trieste
Institut Laue-Langevin
Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
Department of Energy (US)
International Center for Materials Science (US)
Czech Grant Agency
Eusko Jaurlaritza
Rinaldi-Montes, Natalia
Gorria, Pedro
Fuertes Arias, Antonio Benito
Martínez-Blanco, David
Amghouz, Zakariae
Puente-Orench, Inés
Olivi, Luca
Herrero Martín, Javier
Fernández-García, María Paz
Alonso, Javier
Phan, Manh-Huong
Srikanth, Hariharan
Marti, Xavi
Blanco, Jesús A.
Publication Year :
2022

Abstract

Bulk Cr2O3 is an antiferromagnetic (AFM) oxide that exhibits the magnetoelectric effect at room temperature, with neither spontaneous magnetization nor net electric polarization. These physical properties stem from a subtle competition between exchange and crystal field interactions. In this article, we exploit the symmetry breaking at the surface of Cr2O3 nanoparticles for unbalancing this delicate physical equilibrium. The emerging weak ferromagnetic signal we observe persists up to near room temperature (≈ 270 K) at which the antiferromagnetic order disappears. In addition, an exchange-bias effect, that rapidly decreases on heating from low temperature up to 30 K, is resistant to thermal disorder above 200 K. Our findings point to the possible formation of an entangled core/shell magnetic structure, where pinned uncompensated spins at the shell are randomly distributed in a low-temperature spin-glass ordering, with low net magnetic moment and an ordering temperature governed by the AFM Néel temperature.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1348917375
Document Type :
Electronic Resource