Back to Search Start Over

Can we model distribution of population abundance from wildlife–vehicles collision data?

Authors :
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
National Science Foundation (US)
European Commission
Fernández-López, Javier
Blanco-Aguiar, José Antonio
Vicente, Joaquín
Acevedo, Pelayo
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
National Science Foundation (US)
European Commission
Fernández-López, Javier
Blanco-Aguiar, José Antonio
Vicente, Joaquín
Acevedo, Pelayo
Publication Year :
2022

Abstract

Reliable estimates of the distribution of species abundance are a key element in wildlife studies, but such information is usually difficult to obtain for large spatial or long temporal scales. Wildlife–vehicle collision (WVC) data is systematically registered in many countries and could be used as a proxy of population abundance if the number of WVC in each territory increase with the population abundance. However, factors such as road density or human population should be controlled to obtain accurate abundance estimations from WVC data. Here, we propose a hierarchical modeling approach using the Royle–Nichols model for detection–non-detection data to obtain population abundance indices from WVC. Relative abundance and individual detectability were modeled for two species, wild boar Sus scrofa and roe deer Capreolus capreolus at 10 × 10 km cells in mainland Spain from WVC data using environmental, anthropological and temporal covariates. For each cell, a detection was annotated if at least one WVC was recorded at each month (used as survey occasion). The predicted abundance indices were compared with raw hunting statistics at region level to assess the performance of the modeling approach. Site specific covariates such as road density or administrative region and the month of the year, affected individual detectability, with higher WVC probability between October and December for wild boar and between April and July for roe deer. Wild boar and roe deer abundance can be explained by both, bioclimatic and land cover covariates. Abundance indices obtained from WVC data were significantly positively correlated with regional raw hunting yields for both species. We presented empirical evidence supporting that accurate wildlife abundance indices at fine spatial resolution can be generated from WVC data when individual detectability is considered in the modeling process.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1348916896
Document Type :
Electronic Resource