Back to Search Start Over

Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding

Authors :
Mathon, Laetitia
Marques, Virginie
Mouillot, David
Albouy, Camille
Andrello, Marco
Baletaud, Florian
Borrero-Pérez, Giomar H.
Dejean, Tony
Edgar, Graham J.
Grondin, Jonathan
Guerin, Pierre-Edouard
Hocdé, Régis
Juhel, Jean-Baptiste
Kadarusman
Maire, Eva
Mariani, Gael
McLean, Matthew
Polanco F., Andrea
Pouyaud, Laurent
Stuart-Smith, Rick D.
Sugeha, Hagi Yulia
Valentini, Alice
Vigliola, Laurent
Vimono, Indra B.
Pellissier, Loïc
Manel, Stéphanie
Mathon, Laetitia
Marques, Virginie
Mouillot, David
Albouy, Camille
Andrello, Marco
Baletaud, Florian
Borrero-Pérez, Giomar H.
Dejean, Tony
Edgar, Graham J.
Grondin, Jonathan
Guerin, Pierre-Edouard
Hocdé, Régis
Juhel, Jean-Baptiste
Kadarusman
Maire, Eva
Mariani, Gael
McLean, Matthew
Polanco F., Andrea
Pouyaud, Laurent
Stuart-Smith, Rick D.
Sugeha, Hagi Yulia
Valentini, Alice
Vigliola, Laurent
Vimono, Indra B.
Pellissier, Loïc
Manel, Stéphanie
Publication Year :
2022

Abstract

Increasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems. We analysed 226 environmental DNA (eDNA) seawater samples from 100 stations in five tropical regions (Caribbean, Central and Southwest Pacific, Coral Triangle and Western Indian Ocean) and compared those to 2047 underwater visual censuses from the Reef Life Survey in 1224 stations. Environmental DNA reveals a higher (16%) fish biodiversity, with 2650 taxa, and 25% more families than underwater visual surveys. By identifying more pelagic, reef-associated and crypto-benthic species, eDNA offers a fresh view on assembly rules across spatial scales. Nevertheless, the reef life survey identified more species than eDNA in 47 shared families, which can be due to incomplete sequence assignment, possibly combined with incomplete detection in the environment, for some species. Combining eDNA metabarcoding and extensive visual census offers novel insights on the spatial organization of the richest marine ecosystems.

Details

Database :
OAIster
Notes :
text, https://eprints.lancs.ac.uk/id/eprint/170726/1/_Mathon_et_al_Main_manuscript.pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1348640555
Document Type :
Electronic Resource