Back to Search Start Over

Irregular accesses reorder unit: improving GPGPU memory coalescing for graph-based workloads

Authors :
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. ARCO - Microarquitectura i Compiladors
Segura Salvador, Albert
Arnau Montañés, José María
González Colás, Antonio María
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. ARCO - Microarquitectura i Compiladors
Segura Salvador, Albert
Arnau Montañés, José María
González Colás, Antonio María
Publication Year :
2023

Abstract

GPGPU architectures have become the dominant platform for massively parallel workloads, delivering high performance and energy efficiency for popular applications such as machine learning, computer vision or self-driving cars. However, irregular applications, such as graph processing, fail to fully exploit GPGPU resources due to their divergent memory accesses that saturate the memory hierarchy. To reduce the pressure on the memory subsystem for divergent memory-intensive applications, programmers must take into account SIMT execution model and memory coalescing in GPGPUs, devoting significant efforts in complex optimization techniques. Despite these efforts, we show that irregular graph processing still suffers from low GPGPU performance. We observe that in many irregular applications the mapping of data to threads can be safely changed. In other words, it is possible to relax the strict relationship between thread and data processed to reduce memory divergence. Based on this observation, we propose the Irregular accesses Reorder Unit (IRU), a novel hardware extension tightly integrated in the GPGPU pipeline. The IRU reorders data processed by the threads on irregular accesses to improve memory coalescing, i.e., it tries to assign data elements to threads as to produce coalesced accesses in SIMT groups. Furthermore, the IRU is capable of filtering and merging duplicated accesses, significantly reducing the workload. Programmers can easily utilize the IRU with a simple API, or let the compiler issue instructions from our extended ISA. We evaluate our proposal for state-of-the-art graph-based algorithms and a wide selection of applications. Results show that the IRU achieves a memory coalescing improvement of 1.32x and a 46% reduction in the overall traffic in the memory hierarchy, which results in 1.33x speedup and 13% energy savings on average, while incurring in a small 5.6% area overhead.<br />This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant PID2020-113172RB-I00 and the ICREA Academia program.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1348514996
Document Type :
Electronic Resource