Back to Search
Start Over
Vector extensions in COTS processors to increase guaranteed performance in real-time systems
- Publication Year :
- 2023
-
Abstract
- The need for increased application performance in high-integrity systems like those in avionics is on the rise as software continues to implement more complex functionalities. The prevalent computing solution for future high-integrity embedded products are multi-processors systems-on-chip (MPSoC) processors. MPSoCs include CPU multicores that enable improving performance via thread-level parallelism. MPSoCs also include generic accelerators (GPUs) and application-specific accelerators. However, the data processing approach (DPA) required to exploit each of these underlying parallel hardware blocks carries several open challenges to enable the safe deployment in high-integrity domains. The main challenges include the qualification of its associated runtime system and the difficulties in analyzing programs deploying the DPA with out-of-the-box timing analysis and code coverage tools. In this work, we perform a thorough analysis of vector extensions (VExt) in current COTS processors for high-integrity systems. We show that VExt prevent many of the challenges arising with parallel programming models and GPUs. Unlike other DPAs, VExt require no runtime support, prevent by design race conditions that might arise with parallel programming models, and have minimum impact on the software ecosystem enabling the use of existing code coverage and timing analysis tools. We develop vectorized versions of neural network kernels and show that the NVIDIA Xavier VExt provide a reasonable increase in guaranteed application performance of up to 2.7x. Our analysis contends that VExt are the DPA approach with arguably the fastest path for adoption in high-integrity systems.<br />This work has received funding from the the European Research Council (ERC) grant agreement No. 772773 (SuPerCom) and the Spanish Ministry of Science and Innovation (AEI/10.13039/501100011033) under grants PID2019-107255GB-C21 and IJC2020-045931-I.<br />Peer Reviewed<br />Postprint (author's final draft)
Details
- Database :
- OAIster
- Notes :
- 26 p., application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1348512226
- Document Type :
- Electronic Resource