Back to Search Start Over

Accelerating deep reinforcement learning for digital twin network optimization with evolutionary strategies

Authors :
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
Güemes Palau, Carlos
Almasan Puscas, Felician Paul
Xiao, Shihan
Cheng, Xiangle
Shi, Xiang
Barlet Ros, Pere
Cabellos Aparicio, Alberto
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
Güemes Palau, Carlos
Almasan Puscas, Felician Paul
Xiao, Shihan
Cheng, Xiangle
Shi, Xiang
Barlet Ros, Pere
Cabellos Aparicio, Alberto
Publication Year :
2022

Abstract

The recent growth of emergent network applications (e.g., satellite networks, vehicular networks) is increasing the complexity of managing modern communication networks. As a result, the community proposed the Digital Twin Networks (DTN) as a key enabler of efficient network management. Network operators can leverage the DTN to perform different optimization tasks (e.g., Traffic Engineering, Network Planning).Deep Reinforcement Learning (DRL) showed a high performance when applied to solve network optimization problems. In the context of DTN, DRL can be leveraged to solve optimization problems without directly impacting the real-world network behavior. However, DRL scales poorly with the problem size and complexity. In this paper, we explore the use of Evolutionary Strategies (ES) to train DRL agents for solving a routing optimization problem. The experimental results show that ES achieved a training time speed-up of 128 and 6 for the NSFNET and GEANT2 topologies respectively.<br />This publication is part of the Spanish I+D+i project TRAINER-A (ref.PID2020-118011GB-C21), funded by MCIN/ AEI/10.13039/501100011033. This work is also partially funded by the Catalan Institution for Research and Advanced Studies (ICREA) and the Secretariat for Universities and Research of the Ministry of Business and Knowledge of the Government of Catalonia and the European Social Fund.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1348510275
Document Type :
Electronic Resource