Back to Search Start Over

Combined in Silico, Ex Vivo, and in Vivo Assessment of L-17, a Thiadiazine Derivative with Putative Neuro-and Cardioprotective and Antidepressant Effects

Authors :
Sarapultsev, A.
Vassiliev, P.
Grinchii, D.
Kiss, A.
Mach, M.
Osacka, J.
Balloova, A.
Paliokha, R.
Kochetkov, A.
Sidorova, L.
Sarapultsev, P.
Chupakhin, O.
Rantsev, M.
Spasov, A.
Dremencov, E.
Sarapultsev, A.
Vassiliev, P.
Grinchii, D.
Kiss, A.
Mach, M.
Osacka, J.
Balloova, A.
Paliokha, R.
Kochetkov, A.
Sidorova, L.
Sarapultsev, P.
Chupakhin, O.
Rantsev, M.
Spasov, A.
Dremencov, E.
Source :
Int. J. Mol. Sci.; International Journal of Molecular Sciences
Publication Year :
2021

Abstract

Depression associated with poor general medical condition, such as post-stroke (PSD) or post-myocardial infarction (PMID) depression, is characterized by resistance to classical antidepres-sants. Special treatment strategies should thus be developed for these conditions. Our study aims to investigate the mechanism of action of 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobro-mide (L-17), a recently designed thiadiazine derivative with putative neuro-and cardioprotective and antidepressant-like effects, using combined in silico (for prediction of the molecular binding mechanisms), ex vivo (for assessment of the neural excitability using c-Fos immunocytochemistry), and in vivo (for direct examination of the neuronal excitability) methodological approaches. We found that the predicted binding affinities of L-17 to serotonin (5-HT) transporter (SERT) and 5-HT3 and 5-HT1A receptors are compatible with selective 5-HT serotonin reuptake inhibitors (SSRIs) and antagonists of 5-HT3 and 5-HT1A receptors, respectively. L-17 robustly increased c-Fos immunoreac-tivity in the amygdala and decreased it in the hippocampus. L-17 dose-dependently inhibited 5-HT neurons of the dorsal raphe nucleus; this inhibition was partially reversed by the 5-HT1A antagonist WAY100135. We suggest that L-17 is a potent 5-HT reuptake inhibitor and partial antagonist of 5-HT3 and 5-HT1A receptors; the effects of L-17 on amygdaloid and hippocampal excitability might be mediated via 5-HT, and putatively mediate the antidepressant-like effects of this drug. Since L-17 also possesses neuro-and cardioprotective properties, it can be beneficial in PSD and PMID. Combined in silico predictions with ex vivo neurochemical and in vivo electrophysiological assessments might be a useful strategy for early assessment of the efficacy and neural mechanism of action of novel CNS drugs. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Details

Database :
OAIster
Journal :
Int. J. Mol. Sci.; International Journal of Molecular Sciences
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1346380921
Document Type :
Electronic Resource