Back to Search
Start Over
Bimetallic Oxyhydroxide as a High-Performance Water Oxidation Electrocatalyst under Industry-Relevant Conditions
- Source :
- Engineering
- Publication Year :
- 2021
-
Abstract
- Developing high-performing oxygen evolution reaction (OER) electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation. Herein, we prepared a three-dimensional (3D) bimetallic oxyhydroxide hybrid grown on a Ni foam (NiFeOOH/NF) prepared by immersing Ni foam (NF) into Fe(NO3)3 solution. In this unique 3D structure, the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)2 and amorphous FeOOH evenly grown on the NF surface. As a bimetallic oxyhydroxide electrocatalyst, the NiFeOOH/NF hybrid exhibited excellent catalytic activity, surpassing not only the other reported Ni–Fe based electrocatalysts, but also the commercial Ir/C catalyst. In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process. Profiting from the synergy of Fe and Ni catalytic sites, the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol∙L−1 KOH electrolyte at 80 °C, requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500 mA∙cm−2, respectively.
Details
- Database :
- OAIster
- Journal :
- Engineering
- Notes :
- application/pdf
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1343976147
- Document Type :
- Electronic Resource