Back to Search Start Over

Accounting for niche truncation to improve spatial and temporal predictions of species distributions

Authors :
Chevalier, Mathieu
Zarzo-arias, Alejandra
Guélat, Jérôme
Mateo, Rubén G.
Guisan, Antoine
Chevalier, Mathieu
Zarzo-arias, Alejandra
Guélat, Jérôme
Mateo, Rubén G.
Guisan, Antoine
Source :
Frontiers In Ecology And Evolution (2296-701X) (Frontiers Media SA), 2022-08 , Vol. 10 , P. 944116 (14p.)
Publication Year :
2022

Abstract

Species Distribution Models (SDMs) are essential tools for predicting climate change impact on species’ distributions and are commonly employed as an informative tool on which to base management and conservation actions. Focusing only on a part of the entire distribution of a species for fitting SDMs is a common approach. Yet, geographically restricting their range can result in considering only a subset of the species’ ecological niche (i.e., niche truncation) which could lead to biased spatial predictions of future climate change effects, particularly if future conditions belong to those parts of the species ecological niche that have been excluded for model fitting. The integration of large-scale distribution data encompassing the whole species range with more regional data can improve future predictions but comes along with challenges owing to the broader scale and/or lower quality usually associated with these data. Here, we compare future predictions obtained from a traditional SDM fitted on a regional dataset (Switzerland) to predictions obtained from data integration methods that combine regional and European datasets for several bird species breeding in Switzerland. Three models were fitted: a traditional SDM based only on regional data and thus not accounting for niche truncation, a data pooling model where the two datasets are merged without considering differences in extent or resolution, and a downscaling hierarchical approach that accounts for differences in extent and resolution. Results show that the traditional model leads to much larger predicted range changes (either positively or negatively) under climate change than both data integration methods. The traditional model also identified different variables as main drivers of species’ distribution compared to data-integration models. Differences between models regarding predicted range changes were larger for species where future conditions were outside the range of conditions existing in the region

Details

Database :
OAIster
Journal :
Frontiers In Ecology And Evolution (2296-701X) (Frontiers Media SA), 2022-08 , Vol. 10 , P. 944116 (14p.)
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1342991557
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.3389.fevo.2022.944116