Back to Search Start Over

Integrated regulatory models for inference of subtype‐specific susceptibilities in glioblastoma

Authors :
Massachusetts Institute of Technology. Department of Biology
Koch Institute for Integrative Cancer Research at MIT
Liu, Yunpeng
Shi, Ning
Regev, Aviv
He, Shan
Hemann, Michael
Massachusetts Institute of Technology. Department of Biology
Koch Institute for Integrative Cancer Research at MIT
Liu, Yunpeng
Shi, Ning
Regev, Aviv
He, Shan
Hemann, Michael
Source :
EMBO Press
Publication Year :
2022

Abstract

Glioblastoma multiforme (GBM) is a highly malignant form of cancer that lacks effective treatment options or well-defined strategies for personalized cancer therapy. The disease has been stratified into distinct molecular subtypes; however, the underlying regulatory circuitry that gives rise to such heterogeneity and its implications for therapy remain unclear. We developed a modular computational pipeline, Integrative Modeling of Transcription Regulatory Interactions for Systematic Inference of Susceptibility in Cancer (inTRINSiC), to dissect subtype-specific regulatory programs and predict genetic dependencies in individual patient tumors. Using a multilayer network consisting of 518 transcription factors (TFs), 10,733 target genes, and a signaling layer of 3,132 proteins, we were able to accurately identify differential regulatory activity of TFs that shape subtype-specific expression landscapes. Our models also allowed inference of mechanisms for altered TF behavior in different GBM subtypes. Most importantly, we were able to use the multilayer models to perform an in silico perturbation analysis to infer differential genetic vulnerabilities across GBM subtypes and pinpoint the MYB family member MYBL2 as a drug target specific for the Proneural subtype.

Details

Database :
OAIster
Journal :
EMBO Press
Notes :
application/octet-stream, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1342473023
Document Type :
Electronic Resource