Back to Search Start Over

Hard Ferromagnetism Down to the Thinnest Limit of Iron-Intercalated Tantalum Disulfide.

Authors :
Husremović, Samra
Husremović, Samra
Groschner, Catherine K
Inzani, Katherine
Craig, Isaac M
Bustillo, Karen C
Ercius, Peter
Kazmierczak, Nathanael P
Syndikus, Jacob
Van Winkle, Madeline
Aloni, Shaul
Taniguchi, Takashi
Watanabe, Kenji
Griffin, Sinéad M
Bediako, D Kwabena
Husremović, Samra
Husremović, Samra
Groschner, Catherine K
Inzani, Katherine
Craig, Isaac M
Bustillo, Karen C
Ercius, Peter
Kazmierczak, Nathanael P
Syndikus, Jacob
Van Winkle, Madeline
Aloni, Shaul
Taniguchi, Takashi
Watanabe, Kenji
Griffin, Sinéad M
Bediako, D Kwabena
Source :
Journal of the American Chemical Society; vol 144, iss 27, 12167-12176; 0002-7863
Publication Year :
2022

Abstract

Two-dimensional (2D) magnetic crystals hold promise for miniaturized and ultralow power electronic devices that exploit spin manipulation. In these materials, large, controllable magnetocrystalline anisotropy (MCA) is a prerequisite for the stabilization and manipulation of long-range magnetic order. In known 2D magnetic crystals, relatively weak MCA typically results in soft ferromagnetism. Here, we demonstrate that ferromagnetic order persists down to the thinnest limit of FexTaS2 (Fe-intercalated bilayer 2H-TaS2) with giant coercivities up to 3 T. We prepare Fe-intercalated TaS2 by chemical intercalation of van der Waals-layered 2H-TaS2 crystals and perform variable-temperature transport, transmission electron microscopy, and confocal Raman spectroscopy measurements to shed new light on the coupled effects of dimensionality, degree of intercalation, and intercalant order/disorder on the hard ferromagnetic behavior of FexTaS2. More generally, we show that chemical intercalation gives access to a rich synthetic parameter space for low-dimensional magnets, in which magnetic properties can be tailored by the choice of the host material and intercalant identity/amount, in addition to the manifold distinctive degrees of freedom available in atomically thin, van der Waals crystals.

Details

Database :
OAIster
Journal :
Journal of the American Chemical Society; vol 144, iss 27, 12167-12176; 0002-7863
Notes :
Journal of the American Chemical Society vol 144, iss 27, 12167-12176 0002-7863
Publication Type :
Electronic Resource
Accession number :
edsoai.on1341876773
Document Type :
Electronic Resource