Back to Search
Start Over
Detecting anthropogenic volume changes in cross sections of a sandy beach with permanent laser scanning
- Publication Year :
- 2022
-
Abstract
- Coastal areas world wide are highly dynamic areas, subject to continuous deformation processes. Both natural and anthropogenic processes constantly cause changes at various spatial scales. Sandy beaches in the Netherlands fall under a regulation, according to which moving sand is permitted, if the volume change remains below a certain threshold. The threshold holds for volume changes within a cross section of 1 m width of the beach. The enforcement of this rule is currently labor intensive, because monitoring generally happens only on a yearly basis, or incidental and non-quantitative. Improved observation capabilities with remote sensing are advancing the supporting technology for this kind of regulations. Permanent laser scanning is a potential tool for monitoring and quantifying volume changes of a section of the beach. We develop and implement methodology to extract time series of volume change with respect to a reference date of 01-01-2020 covering January 2020 until the end of April 2020. The method is applied on point cloud data from a permanent laser scanner on the coast of Noordwijk, The Netherlands. We analyse the time series for incidents, where the threshold in volume change is passed, and find all shortest intervals during which the threshold is passed. Then we analyse potential underlying cause in order to support not only enforcement, but also evaluation of the current regulation. This will ultimately help to work towards a better understanding of the influence of small scale human activities on coastal development.<br />Optical and Laser Remote Sensing<br />Policy Analysis<br />Coastal Engineering
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1340406559
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.5194.isprs-archives-XLIII-B2-2022-1055-2022