Back to Search Start Over

Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort.

Authors :
Hvidtfeldt, UA
Chen, J
Andersen, ZJ
Atkinson, R
Bauwelinck, M
Bellander, T
Brandt, J
Brunekreef, B
Cesaroni, G
Concin, H
Fecht, D
Forastiere, F
van Gils, CH
Gulliver, J
Hertel, O
Hoek, G
Hoffmann, B
de Hoogh, K
Janssen, N
Jørgensen, JT
Katsouyanni, K
Jöckel, K-H
Ketzel, M
Klompmaker, JO
Lang, A
Leander, K
Liu, S
Ljungman, PLS
Magnusson, PKE
Mehta, AJ
Nagel, G
Oftedal, B
Pershagen, G
Peter, RS
Peters, A
Renzi, M
Rizzuto, D
Rodopoulou, S
Samoli, E
Schwarze, PE
Severi, G
Sigsgaard, T
Stafoggia, M
Strak, M
Vienneau, D
Weinmayr, G
Wolf, K
Raaschou-Nielsen, O
Hvidtfeldt, UA
Chen, J
Andersen, ZJ
Atkinson, R
Bauwelinck, M
Bellander, T
Brandt, J
Brunekreef, B
Cesaroni, G
Concin, H
Fecht, D
Forastiere, F
van Gils, CH
Gulliver, J
Hertel, O
Hoek, G
Hoffmann, B
de Hoogh, K
Janssen, N
Jørgensen, JT
Katsouyanni, K
Jöckel, K-H
Ketzel, M
Klompmaker, JO
Lang, A
Leander, K
Liu, S
Ljungman, PLS
Magnusson, PKE
Mehta, AJ
Nagel, G
Oftedal, B
Pershagen, G
Peter, RS
Peters, A
Renzi, M
Rizzuto, D
Rodopoulou, S
Samoli, E
Schwarze, PE
Severi, G
Sigsgaard, T
Stafoggia, M
Strak, M
Vienneau, D
Weinmayr, G
Wolf, K
Raaschou-Nielsen, O
Publication Year :
2021

Abstract

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1340018768
Document Type :
Electronic Resource