Back to Search Start Over

First-principles investigation of ferroelectricity and related properties of HfO2

Authors :
Dutta, Sangita
Dutta, Sangita
Publication Year :
2022

Abstract

Nonvolatile memories are in increasing demand as the world moves toward information digitization. The ferroelectric materials offer a promising alternative for this. Since the existing perovskite materials have various flaws, including incompatibility with complementary metal-oxide-semiconductor processes in memory applications, the discovery of new optimized FE thin films was necessary. In 2011, the disclosure of ferroelectricity in hafnia (HfO$_2$) reignited interest in ferroelectric memory devices because this material is well integrated with CMOS technology. Although the reporting of ferroelectricity in HfO$_2$ has been a decade, researchers are still enthralled by this material's properties as well as its possible applications. The ferroelectricity in HfO$_{2}$ has been attributed to the orthorhombic phase with spacegroup $Pca2_1$. This phase is believed to be the metastable phase of the system. Many experimental and theoretical research groups joined the effort to understand the root causes for the stability of this ferroelectric phase of HfO$_{2}$ by considering the role of the surface energy effects, chemical dopants, local strain, oxygen vacancies. However, the understanding was not conclusive. In this part of this work, we will present our first-principles results, predicting a situation where the ferroelectric phase becomes the thermodynamic ground state in the presence of a ordered dopant forming layers. Since the main focus was on understanding and optimizing the ferroelectricity in HfO$_{2}$, we observed that the electro-mechanical response of the system has garnered comparatively less attention. The recent discovery of the negative longitudinal piezoelectric effect in HfO$_2$ has challenged our thinking about piezoelectricity, which was molded by what we know about ferroelectric perovskites. In this work, we will discuss the atomistic underpinnings behind the negative longitudianl piezoelectric effect in HfO$_{2}$. We will also discuss the behavior of

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1340003770
Document Type :
Electronic Resource