Back to Search Start Over

Computational modelling studies of FeAl-X ALLOYS(X: Pt, Ru, Pd and Ag)

Authors :
Mkhonto, Chrestinah Surrender
Ngoepe, P. E.
Chauke, H.R.
Mkhonto, Chrestinah Surrender
Ngoepe, P. E.
Chauke, H.R.
Publication Year :
2022

Abstract

In this work, we present first-principles calculation on the structural, thermodynamic, mechanical and electronic stabilities of Fe-Al and FeAl-X (X: Pt, Pd, Ru and Ag) alloys at lower and high temperatures. These systems have recently attracted a lot of attention for both scientific and possible technological application in turbines, Steel-It coating, energy sector, boilers, pipes and automotive parts as a potential replacement of steel due to their excellent resistance to oxidation at high temperatures. However, they suffer limited room temperature ductility and a sharp drop in strength above 873 K. We determined the lattice parameters, heats of formation, elastic constants, bulk to shear moduli, density of states, phonon dispersion curve and X-ray diffraction pattern for binary and ternary system at various concentrations between 0 ≤ x ≤ 10. Furthermore, the lattice expansion, elastic constants, Gibbs free energy, X-ray diffraction pattern and radial distribution function were done on the most stable systems to determine the melting point of FeAl-X ternary systems. A systematic investigation was performed on the stability of the Fe-Al alloys at zero K. We employed CASTEP code to evaluate the thermodynamic, elastic and electronic stability. Virtual crystal approximation was used to determine various atomic concentrations (0 ≤ x ≤ 5) of both Pt and Ru; this allowed more precise predictions on the materials’ behaviour. Further analysis was done on the density of states to describe the behaviour of each phase near the Fermi level; these phases were observed at different percentage compositions. A supercell approach, DMol3 was also used to evaluate these systems at a larger scale (0 ≤ x ≤ 50). VASP and LAMMPS codes were used to determine the stability of these FeAl-X ternary systems at concentrations (0 ≤ x ≤ 10). It was found that the equilibrium lattice parameters of the binary systems are in good agreement to within 2% with the available experimental data. The heat

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1338642769
Document Type :
Electronic Resource