Back to Search Start Over

Machine learning techniques to characterize functional traits of plankton from image data

Authors :
Orenstein, Eric C.
Ayata, Sakina‐dorothée
Maps, Frédéric
Becker, Érica C.
Benedetti, Fabio
Biard, Tristan
De Garidel‐thoron, Thibault
Ellen, Jeffrey S.
Ferrario, Filippo
Giering, Sarah L. C.
Guy‐haim, Tamar
Hoebeke, Laura
Iversen, Morten Hvitfeldt
Kiørboe, Thomas
Lalonde, Jean‐françois
Lana, Arancha
Laviale, Martin
Lombard, Fabien
Lorimer, Tom
Martini, Séverine
Meyer, Albin
Möller, Klas Ove
Niehoff, Barbara
Ohman, Mark D.
Pradalier, Cédric
Romagnan, Jean-baptiste
Schröder, Simon‐martin
Sonnet, Virginie
Sosik, Heidi M.
Stemmann, Lars S.
Stock, Michiel
Terbiyik‐kurt, Tuba
Valcárcel‐pérez, Nerea
Vilgrain, Laure
Wacquet, Guillaume
Waite, Anya M.
Irisson, Jean‐olivier
Orenstein, Eric C.
Ayata, Sakina‐dorothée
Maps, Frédéric
Becker, Érica C.
Benedetti, Fabio
Biard, Tristan
De Garidel‐thoron, Thibault
Ellen, Jeffrey S.
Ferrario, Filippo
Giering, Sarah L. C.
Guy‐haim, Tamar
Hoebeke, Laura
Iversen, Morten Hvitfeldt
Kiørboe, Thomas
Lalonde, Jean‐françois
Lana, Arancha
Laviale, Martin
Lombard, Fabien
Lorimer, Tom
Martini, Séverine
Meyer, Albin
Möller, Klas Ove
Niehoff, Barbara
Ohman, Mark D.
Pradalier, Cédric
Romagnan, Jean-baptiste
Schröder, Simon‐martin
Sonnet, Virginie
Sosik, Heidi M.
Stemmann, Lars S.
Stock, Michiel
Terbiyik‐kurt, Tuba
Valcárcel‐pérez, Nerea
Vilgrain, Laure
Wacquet, Guillaume
Waite, Anya M.
Irisson, Jean‐olivier
Source :
Limnology And Oceanography (0024-3590) (Wiley), 2022-08 , Vol. 67 , N. 8 , P. 1647-1669
Publication Year :
2022

Abstract

Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.

Details

Database :
OAIster
Journal :
Limnology And Oceanography (0024-3590) (Wiley), 2022-08 , Vol. 67 , N. 8 , P. 1647-1669
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1337973487
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1002.lno.12101