Back to Search Start Over

Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions

Authors :
Alexandrou, C.
Bacchio, S.
Dimopoulos, P.
Finkenrath, J.
Frezzotti, R.
Gagliardi, G.
Garofalo, M.
Hadjiyiannakou, K.
Kostrzewa, B.
Jansen, K.
Lubicz, V.
Petschlies, M.
Sanfilippo, F.
Simula, S.
Urbach, C.
Wenger, U.
Alexandrou, C.
Bacchio, S.
Dimopoulos, P.
Finkenrath, J.
Frezzotti, R.
Gagliardi, G.
Garofalo, M.
Hadjiyiannakou, K.
Kostrzewa, B.
Jansen, K.
Lubicz, V.
Petschlies, M.
Sanfilippo, F.
Simula, S.
Urbach, C.
Wenger, U.
Publication Year :
2022

Abstract

We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_{\mu}^{\rm HVP}$, in the so-called short and intermediate time-distance windows, $a_{\mu}^{SD}$ and $a_{\mu}^W$, defined by the RBC/UKQCD Collaboration [1]. We employ a subset of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, which are close to the physical point for the masses of all the dynamical flavors. The simulations are carried out at three values of the lattice spacing ranging from $\simeq 0.057$ to $\simeq 0.080$ fm with linear lattice sizes up to $L \simeq 7.6$~fm. For the short distance window we obtain $a_\mu^{SD}({\rm ETMC}) = 69.33\,(29) \cdot 10^{-10}$, which is consistent with the recent dispersive value $a_\mu^{SD}(e^+ e^-) = 68.4\,(5) \cdot 10^{-10}$ [2] within $\simeq 1.6 \, \sigma$. In the case of the intermediate window we get the value $a_\mu^W({\rm ETMC}) = 235.0\,(1.1) \cdot 10^{-10}$, which is consistent with the result $a_\mu^W({\rm BMW}) = 236.7\,(1.4) \cdot 10^{-10}$ [3] by the BMW collaboration as well as with the recent determination by the CLS/Mainz group of $a_\mu^W({\rm CLS}) = 237.30\,(1.46) \cdot 10^{-10}$ [4] at the $\sim 1.0 - 1.3 \, \sigma$ level. However, it is larger than the dispersive result $a_\mu^W(e^+ e^-) = 229.4\,(1.4) \cdot 10^{-10}$ [2] by $\simeq 3.1 \, \sigma$. The tension increases to $\simeq 4.2 \, \sigma$ if we average our ETMC result with the BMW and the CLS/Mainz ones. Our accurate lattice results in the short and intermediate windows hint at possible deviations of the $e^+ e^-$ cross section data with respect to Standard Model (SM) predictions distributed somewhere in the low (and possibly intermediate) energy regions, but not in the high energy region.<br />Comment: 82 pages, 33 figures, 14 tables

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1335887703
Document Type :
Electronic Resource